
Pioneer Academics Research Program

Swarm and Search Systems
An Application of Swarm Robotics to the Exploration

of Fireground Environments

Shiv Kampani

Spring 2021

Submitted to: Carlotta A. Berry, Ph.D.

June 27, 2021

1

Executive Summary

This paper examines the dangers associated with the exploration of fireground

environments by firefighters, such as low visibility, obstructions and high smoke concentration.

The solution proposed by this paper makes use of a swarm of small-sized, coordinated robots to

explore, map out and gather essential data about large fireground environments. Existing

methods of exploring unfamiliar fireground environments as well as the scope and applications

of swarm robotics have been discussed. While describing the proposed solution, this paper

justifies the inclusion of all components, describes design criteria as well as all hardware and

software subsystems. Tests carried out on the proposed system in a simulated fireground

environment have also been evaluated. The system was found to be efficient, cost-effective and

scalable due to the small size and low weight of individual robots. It was determined that the

proposed system is able to collect essential data about unfamiliar fireground environments at a

rate of 0.029365 m2 per robot per second. Lastly, recommendations about the implementation of

the proposed system in a real-world situation have been discussed.

2

Table of Contents

1. Introduction……………………………………………………………………... 3

2. Research and Literature Review…………………………………………….. 4-5

3. Design Criteria………………………………………………………………….. 5

4. Design Specifications…………………………………………………………. 6-10

4.1. Detecting Fire……………………………………………………………...
4.2. Measuring Distance to Obstacles……………………………………….
4.3. Communication Mechanisms…………………………………………....
4.4. Localization………………………………………………………………..

6-7
8-9
9-10
10

5. Design Method………………………………………………………………….. 10-29

5.1. Drive Subsystem………………………………………………………….
5.2. Sensor Subsystem………………………………………………………..
5.3. Communication Subsystem……………………………………………...
5.4. Full Subsystem Integration……………………………………………....

11-19
19-22
22-24
24-29

6. Verification and Testing……………………………………………………….. 29-37

6.1. Individual Subsystem Tests……………………………………………...
6.2. Full Subsystem Integration Tests………………………………………..

29-33
33-37

7. Conclusion………………………………………………………………………. 38

8. Recommendations……………………………………………………………... 38-39

9. References………………………………………………………………………. 40-41

10. Appendices……………………………………………………………………… 42-71

10.1. Circuit Diagram…………………………………………………………....
10.2. Flowcharts of States……………………………………………………...
10.3. Images of Proposed System…………………………………………….
10.4. Raw Data from Testing…………………………………………………...
10.5 Video Demonstration……………………………………………………..
10.6. Bill of Materials…………………………………………………………….
10.7. Full System Code………………………………………………………....

42
43-44
45-46
47-50
51
51
51-71

3

1 Introduction

Fireground search and rescue operations present several challenges to firefighters.

Unfamiliar fireground environments may contain obstructions such as locked doors and heavy

furniture; high smoke concentration may reduce visibility; a lack of information about the

fireground environment may contribute significant delays to the process of locating survivors.

The process of manually searching for survivors may lead to overexertion, a leading cause of

firefighter fatalities. According to “Firefighter Fatalities in 2019 - US” (Fahy et al., 2019),

prolonged exposure to smoke, carcinogens and other contaminants present in fireground

environments could lead to cancer, heart disease, cardiac issues and other long-term effects on

firefighters’ physical health. Furthermore, search and rescue operations in fireground

environments are stressful and traumatic. Such operations have even been linked to long-term

impacts on firefighters’ emotional health, as well as anxiety, depression and post-traumatic

stress disorder in some firefighters. Fahy et al. also identify “Overexertion stress/medical” as the

leading cause of firefighter fatalities (54% of firefighter fatalities). Thirteen percent of firefighter

fatalities have also been attributed to “Rapid fire progress/explosion”. Thus, it may be safer and

more efficient for automated robotic systems to survey the unfamiliar environment and collect

essential information about the surroundings and locate survivors. Information gathered by

automated robotic systems can additionally be used to inform routes chosen by firefighters.

The application of robotic systems to emergency situations is a widely researched field.

“Robots in Crisis Management: A Survey'' (Kostavelis et al., 2017) presents an overview of

specialized robots with applications in crisis response. Although this paper describes

applications of robots in emergency situations ranging from urban search to bomb disposal,

some of the systems described have applications in fireground environments. Legged robots,

including hexapods and humanoid robots, are able to traverse uneven terrain and climb

staircases. However, these solutions are extremely large and difficult to deploy. More compact

snake-like robots have also been described which can also maneuver through obstacles, but

these may not be able to capture a stable video feed of the fireground environment due to the

motion of the robot’s head during locomotion. Yet another disadvantage of these systems is that

they are not robust, in that, if one component or subsystem of these robots fails, then the overall

efficiency of the search operation is reduced significantly. Thus, a swarm robotic system which

relies on coordination between multiple, small-sized robots may be most efficient in surveying

large, unfamiliar fireground environments.

4

2 Research and Literature Review

Ihsan and Marhoon (2018) discuss the implementation of a Bluetooth-controlled Arduino

based robot which uses sensors to detect fire in closed areas. The paper initially describes the

design criteria of a mobile robot system: mobility, autonomy and perception. In order to achieve

mobility, the author evaluates legged locomotion and wheel-based locomotion. The robot is able

to perceive (that is, make observations about its surroundings) using a flame sensor and an RF

camera. This system uses a DC water pump to extinguish any fires that it detects, and is

controlled over Bluetooth.

“Development of Mobile Robot with Sensor Fusion Fire Detection Unit” describes

another mobile robotics system designed for use in a fireground environment, similar to Ihsan

and Marhoon (2018). However, this paper also contains a sensor fusion method which

describes how the probability that a fire is present can be determined using inputs from 3

sensors: a temperature sensor, a smoke sensor and a flame sensor. Using regression analysis,

the coefficients of the readings of the temperature sensor, smoke sensor and flame sensor were

determined to be 0.16, 0.07 and 0.77 respectively.

Navarro and Matía (2013) describe a comprehensive taxonomy of swarm robotics

systems and identify several fundamental characteristics that every swarm robotics system must

possess. Some of these characteristics include homogeneity, autonomy and collective behavior.

This paper also describes precursory taxonomies for swarm robotics and mentions several

existing swarm robotic systems. Lastly, this paper analyzes several swarm control algorithms (or

applications of swarm control systems) such as aggregation, dispersion, and collective mapping

of unknown environments. Navarro and Matía (2013) state that individual robots are incapable

of or inefficient at performing the overall task of surveying the environment. Thus, for the robots

to map an environment efficiently, swarming is required. Individual robots must be able to

communicate and collaborate with nearby robots.

“Swarm Robots with Queue Organization Using Infrared Communication” (de Mendonça

et al., 2012) describes the use of e-puck (E-Puck.org, 2018) robots to demonstrate autonomous,

collective behavior of a swarm during the process of queue organization, or the process in

which robots organize themselves into a queue. This paper discusses swarm intelligence and

5

explains the functions as well as rationale behind including all of the sensors present on the

e-puck robot. The paper also includes pseudocode explaining some of the algorithms used for

communication as well as object avoidance. Moreover, the paper comments on issues

associated with infrared communication in swarm robotic systems. Due to reflections of emitted

infrared light from objects in the environment, the infrared readings from receivers contain lots of

noise, which might impede communication between robots. Noise due to infrared light present in

the environment may be a large concern due to infrared emissions from fire. Furthermore, the

elimination of this noise using digital filters may be complicated and unreliable in dangerous

fireground environments. Nevertheless, this paper describes the use of a digital filter to reduce

noise, which greatly increased the robots’ abilities to communicate with one another.

3 Design Criteria

When designing robotic systems to aid fire fighters, the efficiency of the system (or the

amount of time required by the system to gather essential data about the surroundings) is the

most important factor, as delays in search and rescue operations could result in fatalities.

Weight and size are also important constraints because of the fact that larger robots may be

difficult to deploy and may not be able to traverse through an environment that contains small

spaces or several obstructions. Lastly, cost is an important design criterion as low-cost solutions

are significantly easier to implement. Since multiple robots are generally used in a swarm

robotics system, the cost for each robot must be low for the entire system to be scalable and

cost efficient. The aforementioned design criteria can also be defined quantitatively:

● Efficiency - the swarm robotic system can be considered efficient if it is able to gather

essential information at a rate of 1 m2 per robot per minute.

● Weight and size - each robot in the swarm robotic system must not weigh more than 1.0

kg. Each robot should also be able to fit inside a 30 cm by 30 cm by 30 cm cube.

● Cost - the cost of each robot in the swarm robotic system must be no more than $20.00.

6

4 Design Specifications

The proposed solution to problems posed by firefighter-led search and rescue missions

uses swarm robotics. Swarm robotics is the study of collective behavior that emerges from the

interactions between simple robots. The use of several small robots to collect essential data

about unknown environments may be an efficient approach of mapping out fireground

environments.Individual robots used in a swarm robotic system must be able to move as well as

gather essential data about the fireground environment using sensors. Since robots must

communicate with one another to achieve collective behavior, each robot must have the ability

to both send data to and receive data from robots around it or a centralized receiver. Robots

should also be able to determine either their absolute position in the environment (expressed as

a distance and angle from the entry point into the environment) or their position relative to other

robots in the swarm.

Within the scope of this research paper, essential data about the simulated fireground

environment is assumed to be the positions of any and all fires and obstacles in the

environment. Thus, the proposed system must be able to measure distance between itself and

the nearest obstacles in the environment as well as detect fire.

4.1 Detecting Fire

In order for robots to be able to determine the positions of the nearest fire, they must be

able to detect smoke emitted by the fire, infrared light emitted by the fire, or any rises in

temperature that occur while approaching the source of fire. The three possible sensor

configurations have been outlined in the decision matrix on the next page.

7

Table 1: Decision Matrix for Fire Detection Sensors

Feature Weightage IR-based Flame
Sensor

MQ2 Smoke
Concentration
Sensor

TMP36
Temperature
Sensor

Low Cost 30% 5 4 5

Range 20% 3 5 4

Accuracy 50% 5 2 1

Total 100% 4.6 3.2 2.8

In the decision matrix above, each sensor has been given a score between 1 to 5

inclusive, on the basis of three design criteria: low cost, range and accuracy. Range is

measured differently for different sensors. For the IR-based Flame Sensor, it should be able to

detect a fire that is between 20cm - 150cm away. The MQ2 Smoke Concentration Sensor

should be able to detect between 300-1000 ppm of smoke, and the TMP36 temperature sensor

should be able to detect temperatures between 20°C-150°C.

Accuracy, within the scope of this paper, refers to the ability of the sensor to determine

the position of the fire. Although smoke and temperature sensors can approximate the location

of a fire based on changes in the temperature and smoke concentration readings, it is possible

that extraneous factors present in the fireground environment are responsible for changes in

these readings. The flame sensor, however, would be able to determine the position and

direction of the fire relative to the robot as it is able to detect infrared light emitted directly from

the fire.

“Development of Mobile Robot with Sensor Fusion Fire Detection Unit” (Sucuoglu, H. S.

et al., 2018) describes a sensor fusion method of determining the probability that a fire is

present using inputs from three sensors: a temperature sensor, a smoke sensor and a flame

sensor (all three sensors are similar to those described in the design-matrix above). Using a

linear regression analysis, the coefficients of the readings of the temperature, smoke and flame

sensors were determined to be 0.16, 0.07 and 0.77 respectively. Since the coefficient of the

8

flame sensor (0.77) is significantly greater than that of the temperature sensor (0.16) and the

smoke sensor (0.07), the flame sensor would be able to determine the position of a fire in the

environment more accurately.

Based on the design matrix, the flame sensor has been selected in order to detect fire.

4.2 Measuring Distance to Obstacles

In order for robots to be able to determine the positions of the nearest obstacles, they

must have an IR-based, sonar-based or LIDAR-based distance measuring sensor. As with

sensors that detect fire, range, cost and accuracy are important design criteria. Consider the

following design matrix:

Table 2: Decision Matrix for Obstacle Detecting Sensors

Feature Weightage IR-based
distance sensor

HC-SR04 Ultrasonic
distance sensor

LIDAR

Low Cost 30% 4 5 1

Range 20% 3 5 3

Accuracy 50% 4 3 5

Total 100% 3.8 4.0 3.4

Since the fireground environment will contain objects and fires that are about

4cm-200cm away from the robot, robots should be able to detect the distance to any obstacles

within that range. Although LIDARs and IR-based distance sensors are able to detect object

distances within this range in a normal environment, in a fireground environment with high

smoke concentration, their ranges are reduced. Moreover, the accuracy of the LIDAR and

IR-based distance sensors is also reduced in smoke-filled environments. As described by Starr

et al. (2013), LIDARs are inaccurate for areas with dense smoke and low visibility (<5m).

LIDARs are also significantly more expensive than ultrasonic sensors. As mentioned earlier, low

cost of individual robots is an important design criterion of a swarm robotic system.

9

Based on the design matrix, the HC-SR04 ultrasonic sensor has been selected.

4.3 Communication Mechanisms

In a swarm robotic system, robots must be able to communicate with each other or with

a centralized controller. There are two possible approaches to implementing a communication

mechanism between robots: Bluetooth-based or infrared-based robot communication. Consider

the table below, which outlines the advantages and disadvantages of both these mechanisms.

Table 3: Advantages and Disadvantages of Communication Mechanisms

Method Advantages Disadvantages

Infrared
communication

● Robots may make use of

infrared sensors to share

information about relative

position and orientation.

This would eliminate the

need for additional sensors

required for localization.

● Smoke present in the

environment may limit the

range of infrared sensors.

● The use of multiple infrared

sensors may be expensive.

● Multiple sensors may take up

a lot of space on the robot.

Bluetooth
communication
using the HC-05
module

● Low cost

● Bluetooth communication

may also be used for

communicating with a

central receiver.

● Bluetooth communication

works efficiently even in

smoky environments.

● Bluetooth communication

does not allow a robot to

determine its position relative

to other robots in the swarm.

Additional sensors would be

required for localization in the

environment.

10

Bluetooth communication would be more cost and space efficient to implement given the

small size of individual robots in the swarm. Furthermore, as described by Starr et al. (2013), the

range of infrared-based communication mechanisms would be reduced in smoke filled areas,

where communication between robots is critical. In smoke filled areas robots must be able to

coordinate to rendezvous at the site of a fire. Thus, Bluetooth communication is more reliable

and efficient than infrared-based communication.

4.4 Localization

While surveying the fireground environment, swarm robots must be able to construct a

map of the environment to guide firefighters or other rescue efforts. In order to do so, robots

must be able to determine their absolute position in the environment or their position relative to

other robots in the swarm. In order to determine absolute position, a combination of optical

encoders and a gyroscope can be used. Determining relative position, however, can also be

done using the ring of infrared transmitters and receivers. Since infrared sensor range may be

limited by the presence of smoke, it is an unreliable mechanism to determine a robot’s location

in the swarm. Moreover, flames emit infrared light. Proximity to a fire could lead to unreliable

measurements due to the infrared sensors on a robot sensing light emitted from the fire itself.

Robot localization is critical, especially near fires, so that the exact positions of fires can be

determined and communicated to firefighters. Hence, optical encoders and a gyroscope will be

used to determine the location of the robot relative to its starting point.

5 Design Method

Each robot in the swarm must be able to navigate through the fireground environment as

well as communicate with neighbouring robots; accordingly, it must have a number of

subsystems. In the proposed system, each robot has three main subsystems: the drive

subsystem, which enables the robot to move around and explore the environment, the sensor

subsystem, which enables the robot to determine the positions of any objects, obstructions or

fires in the environment, and the communication subsystem, which enables robots to

communicate with each other as well as with a centralized controller.

Each of these subsystems is controlled by the Arduino UNO microcontroller. Eight AA

batteries have been used to provide power for each robot. When these subsystems are

11

integrated, each robot is able to explore and collect essential data about the environment. With

the use of a centralized controller and many such robots, the proposed swarm robotic system

can be constructed. The following section of this paper will contain information about the

purpose as well as the hardware and software specifics of each of the aforementioned

subsystems as well as full system integration.

5.1 Drive Subsystem

5.1.1 Hardware Components

The purpose of this subsystem is to allow each robot in the swarm to move

around and explore the fireground environment. The drive subsystem consists of the

following electronic components:

Figure 1: 150 RPM Geared DC Motors

From 150 RPM Dual Shaft Motor. RoboHaat. (2021, March 19).

https://robohaat.com/product/150-rpm-dual-shaft-motor/.

The purpose of including these parts in the subsystem is to drive individual

robots. These motors have been selected as they are inexpensive (~$0.67 each) and

light-weight (~30 g each) relative to other DC motors; thus, they satisfy the design

criteria for the proposed system.

12

Figure 2: L298N Motor Controller

From L298N DC Motor Driver Module. Robocraze. (n. d.).

https://www.amazon.in/Robocraze-L298-Motor-Driver-Module/dp/B072NCPM5R.

The purpose of including this part in the subsystem is to control the speed and

direction of both motors. In addition to being a dual full-bridge controller, this motor driver

was most readily available and is inexpensive (~$2.70), hence its selection.

Figure 3: MPU-6050 Six-Axis Gyroscope and Accelerometer

From MPU6050 - 3 axis gyroscope and 3 axis accelerometer. Nettigo. (n. d.).

https://nettigo.eu/products/mpu6050-3-axis-gyroscope-and-3-axis-acclerometer.

The purpose of including this part in the subsystem is to measure the rate of

rotation of the robot in the yaw-axis. The rate of rotation in the yaw-axis can be

integrated, with respect to time, to calculate the yaw-angle, tilt, or the heading, of the

robot relative to its starting orientation. This value can be used to calculate the position

or path travelled by the robot along with measurements of distance travelled by the

robot.

13

Figure 4: HC-020K Optical Encoders

From Hc-020K Double Speed Measuring Module. Kuongshun Electronic

Limited. (n. d.).

https://kuongshun.en.made-in-china.com/product/CypQbJRGsMcm/China

-hc-020k-Double-Speed-Measuring-Module-with-Speed-Encoder-Kit.html.

The purpose of including this part in the subsystem was to measure the RPM

(revolutions per minute) of each motor of the robot. Using these measurements and the

diameter of the wheel (in cm), the speed of the robot can be determined (in cm/s). By

integrating the speed of the robot, with respect to time, the distance travelled by the

robot can be computed. Along with measurements of yaw-angle from the MPU-6050

gyroscope, the robot’s absolute location and path travelled can both be determined,

which satisfies the localization criterion of the previously outlined design specifications.

5.1.2 Circuit Diagram

14

Figure 5: Circuit Diagram of the Drive Subsystem

The circuit diagram above shows the breadboard-layout of the drive subsystem,

with all of the aforementioned electrical components as well as an Arduino UNO

microcontroller, 8 AA Batteries, a slide switch and 2 100 nF capacitors.

5.1.3 Software

Localization

In order to map out the path taken by the robot, measurements are taken from

the optical encoders and the gyroscope respectively. This allows us to determine the

heading or yaw-angle of the robot relative to the starting yaw-angle (0°) as well as the

total distance travelled by the left-motor and the right-motor at any time t0. Since

measurements are taken at regular intervals of time T, where T is the time between loop

function calls in an Arduino program, measurements are also taken at time t1, where t1 –

t0 = T. Consider the diagram below, showing the motion of the robot between two

successive measurements, separated by time interval T.

15

Figure 6: Diagram of Robot Displacement

In the given time interval T, the robot has moved a distance of d (in cm) at a

yaw-angle of θ°, relative to 0°, or the orientation of the robot at the start of the program.

Since T is small (in milliseconds), it can reasonably be assumed that the robot is moving

in a straight-line or not changing direction during the time interval T. In the diagram,

“Initial Position” represents the position of the robot at time t0, and “Final Position”

represents the position of a robot at time t1, after an interval of time T. Using

trigonometry, the vertical and horizontal displacement of the robot every T milliseconds

can be calculated. Hence, given that the unfamiliar environment can be approximated by

a 2D x-y plane, the (x,y) coordinate of each robot at any given point in time is known as

the starting location of each robot is known and the displacement of the robot in the

vertical and horizontal sections can be calculated every T milliseconds. Thus, the

absolute position of the robot at all times is known. With these designations, the

localization criterion of the design specifications can be met.

PID Control

16

During initial tests of driving an individual robot, it was observed that even when

both the motors were assigned the same speed by the software program, the actual

RPM speeds of the motors were different. This subsequently caused the robot to veer off

instead of travelling in a straight line. This is because the motors that are being used

(150 RPM Geared DC motors) are relatively inexpensive, higher RPM and may be of

lower quality than more expensive motors. Thus, even when they are assigned the same

speed, differences in the gearboxes of each of the motors would result in them travelling

at different RPM speeds. A hardware solution to this problem would not be feasible as

low cost is one of the design criteria of this solution and using higher quality motors

would increase the cost of each individual robot. Hence, a software solution was

implemented to solve the problem. PID (proportional-integral-derivative) control is a

method of controlling systems by calculating the error in the system and applying a

correction based on that error.

Figure 7: Diagram of Robot Displacement

The diagram above shows a PID feedback loop or PID controller. PID controllers

consist of three components: a proportional term, an integral term and a derivative term.

Before these components are calculated, the error of the system is determined, which is

the difference between the system’s current state and the desired setpoint state. The

proportional term is equal to the error multiplied by a constant KP. The integral term is

equal to the integration of the error term, with respect to time, multiplied by a constant KI.

The derivative term is equal to the first derivative of the error term, with respect to time,

multiplied by a constant KD. The correction term is the summation of the three PID

17

components. The correction term is then applied to modify the behaviour of the system.

The state of the system is then measured by a sensor and the PID loop repeats itself.

Over time, the system corrects itself and performs as originally intended by reducing the

error term to approximately 0.

In the drive subsystem, PID control was applied to two functions. The purpose of

the first function was to enable each robot to drive in a straight line and to correct any

deviations from its path. The error, in this function, was the difference between the

setpoint (0°), or the heading that the robot was supposed to maintain, and the actual

yaw-angle of the robot as measured by the MPU-6050 gyroscope. The correction was

applied in order to assign a higher speed to the motor with the lower RPM value and

assign a lower speed to the motor with a higher RPM value. By minimizing error, the PID

control loop was successful in enabling the robot to drive in a straight line path. The

purpose of the second function was to enable each robot to point-turn to a certain

heading (for example, turn to 30° relative to its starting orientation). The error was

calculated by taking the difference between the desired heading and the current

yaw-angle of the robot. This function is particularly useful in the environment exploration

algorithms discussed in the “Full System Integration” section.

For PID subsystems to work as intended, the constants KP, KI, and KD must be

correctly selected. In this system, a trial-and-error based tuning method was selected, to

determine values for the three constants. However, rule based methods such as the

Ziegler-Nichols method can also be used.

Debouncing Encoder Readings

A challenge encountered while measuring values of RPM from an encoder was

“bouncing”, which refers to spurious oscillations of the voltage of the interrupt pin due to

minor hardware issues. These oscillations of the input voltage of the interrupt pin

connected to encoders result in the Arduino UNO microcontroller overcounting the

number of transitions between high and low states of the interrupt pin. This leads to an

overestimated value for the RPM of the motor, which can lead to incorrect calculations of

the distance travelled by a robot.

18

Figure 8: Diagram of “Bounces” in Signal

From Switch Debounce in Digital Circuits. Geeks for Geeks. (2019, November 20).

https://www.geeksforgeeks.org/switch-debounce-in-digital-circuits/.

The “Fluctuations” section of the diagram represents the spurious “bounces” of

the voltage signal. Although, in reality, the signal changes once from low (0V) to high

(5V), “bounces” cause the interrupt handler program to overcount the number of

transitions between low and high states. These “bounces” tend to have small time

periods. Both hardware and software solutions to this problem have been identified and

implemented.

The hardware solution to this problem involves attaching 100 nF capacitors

between the input and ground pins of the encoder. Capacitors tend to resist changes in

voltage. Having a capacitor with low capacitance would allow genuine changes in the

state of the pin to be interpreted, but would effectively resist any spurious or rapid

fluctuations and “bounces”. In the circuit layout of the subsystem, the two 100 nF

capacitors have been shown.

The software solution to this problem involves a modification to the interrupt

handler function. The interrupt handler function is supposed to record a pulse every time

a transition of state of the signal pin is detected. By calculating the number of pulses per

unit time, the RPM of the motor can be determined. However, bounces lead to an

19

overcount of pulses and, consequently, an overestimation of the RPM. The updated

interrupt handler is shown on the next page.

// Variable to store number of pulses recorded

volatile int pulses = 0;

// Minimum time between genuine state transitions

unsigned long debounceInterval = 10;

void interruptHandler() {

// Time when interrupt was recorded is stored

unsigned long interruptTime = millis();

// If interrupts have been received more than 10ms apart

if (interruptTime - prevInterruptTime > debounceInterval) {

// Increment the pulse counter

pulses++;

}

// Set current interrupt time to previous interrupt time

prevInterruptTime = interruptTime;

}

In the code snippet above, the interrupt handler only counts a transition between

low and high states if it occurs more than 10ms after the previous transition. Since

“bounces” occur small time intervals apart from each other, they will not be recorded.

5.2 Sensor Subsystem

5.2.1 Hardware Components

The purpose of this subsystem is to allow each robot in the swarm to measure

distance to nearby obstacles or obstructions in the fireground environment. This

subsystem also allows the robot to detect flames from a fire. The sensor subsystem

consists of the following electronic components:

20

Figure 9: HC-SR04 Ultrasonic Sensor

From HC-SR04-Ultrasonic Range Finder. Robu.in. (n. d.).

https://robu.in/product/hc-sr04-ultrasonic-range-finder/.

The purpose of including this part in the subsystem is to measure the distance to

obstacles directly in-front of the robot. Possible alternatives for this sensor as well as

justification for why this sensor was chosen are outlined in the “Design Specifications”

section of this paper.

Figure 10: IR-Based Flame Sensor

From IR Flame Sensor Module Detector. Atomic Market. (n. d.).

https://www.amazon.com/Smartsense-Temperature-Compatible-Atomic-Market/dp/B00T

NOHTV2.

The purpose of including this part in the subsystem is to detect flames from fires

that may be present in the environment. Possible alternatives for this sensor as well as

justification why this sensor was chosen are outlined in the “Design Specifications”

section of this paper.

5.2.2 Circuit Diagram

21

Figure 11: Circuit Diagram of the Sensor Subsystem

The circuit diagram above shows the breadboard-layout of the sensor

subsystem, with all of the aforementioned electrical components as well as an Arduino

UNO microcontroller.

5.2.3 Software

Calculating Distance to Obstacles

In order to determine the distance to obstacles in-front of the robot, an ultrasonic

sensor was used. The sensor sends out a 10-microsecond long pulse of sound and

measures the time taken for the reflected wave to be detected. From this time and the

known value for the speed of sound in air (~340 m/s), the distance between the robot

and the obstacle can be ascertained. The following flowchart describes the algorithm

used to calculate obstacle distance. Values of object distance were also scaled by a

factor of 1.026 after it was statistically determined that the ultrasonic sensor tends to

underestimate the actual distance of the obstacle from the robot.

22

Figure 12: Flowchart for Obstacle Distance Measurement

In order to determine the absolute location of the obstacle in the environment, as

an (x,y) coordinate, a similar approach was used as described earlier, involving

resolution of the object distance into vertical and horizontal distances from the robot’s (x,

y) location, based on the robot’s heading.

Detecting Fire

Since the flame sensor is connected to the Arduino UNO by a digital pin, when a

flame is detected, the pin is set to a high voltage state and is processed by the software

program. The flame sensor also contains a trimmer potentiometer (trimpot), which allows

the sensitivity of the sensor to be adjusted.

5.3 Communication Subsystem

23

5.3.1 Hardware Component

The purpose of this subsystem is to allow each robot in the swarm to

communicate with neighbouring robots as well as with a centralized controller. The

communication subsystem consists of a single electronic component:

Figure 13: HC-05 Bluetooth Module

From Module bluetooth HC-05. GM Electronic. (n. d.).

https://www.gmelectronic.com/bluetooth-modul-hc-05.

The HC-05 Bluetooth module allows each robot to establish a connection with the

centralized controlling laptop as well as send and receive data. Possible alternatives for

this component as well as justification for why this component was chosen are outlined

in the “Design Specifications” section of this paper.

5.3.2 Circuit Diagram

24

Figure 14: Circuit Diagram of the Communication Subsystem

The circuit diagram above shows the breadboard-layout of the communication

subsystem, with the HC-05 Bluetooth module, an Arduino UNO microcontroller and three

1kΩ resistors.

5.3.3 Software

The HC-05 Bluetooth module is connected to the RX and TX pins of the Arduino

UNO and uses Serial communication to send and receive data. On the centralized

controlling laptop, a Processing sketch connects to the HC-05 modules of individual

robots and communicates with them using the Serial interface.

5.4 Full Subsystem Integration

5.4.1 Circuit Diagram

The circuit diagram for the full subsystem integration of a single swarm robot can

be found in the Appendix. The circuit diagram shows the full-subsystem integration of all

25

three aforementioned subsystems. Each robot is controlled by an Arduino UNO

microcontroller and is powered by eight AA batteries (1.5V each) connected in series.

5.4.2 Software

State Machine

According to the comprehensive taxonomy for swarm robotic systems as

proposed by Navarro and Matía (2013), individual robots must be homogenous. Thus,

the software and hardware (circuit layout) must remain the same for all robots in the

system. In order to control each robot in the swarm robotic system, a state machine

approach was employed.

Figure 15: Proposed State Machine for a Swarm Robot

The purpose of the swarm robotic system is to survey the unfamiliar fireground

environment and locate the positions of any obstructions and fires in the environment.

Hence, each robot must survey and explore the environment. This is accomplished by

26

the “Survey State” and “Explore State”. When a fire is detected, all robots should gather

at the site of the fire. This is accomplished by the “Rendezvous State”.

Survey State

The flowchart for the “Survey State” can be found in the Appendix.

The “Survey State” involves the robot turning 45° in a clockwise direction

repeatedly, until it reaches its original heading. Every time the robot turns, it takes a

measurement of the nearest obstacle using the ultrasonic sensor and uses the flame

sensor to determine whether a fire is detected. If a fire is detected at any point, the

program terminates and the state is changed to the “Rendezvous State”. If the robot

does not detect any fires, the angle with the furthest obstacle is chosen and the robot

turns to that angle. The robot then transitions to the “Explore State”.

Explore State

The flowchart for the “Explore State” can be found in the Appendix.

The “Explore State” involves the robot driving forwards, in a straight line, until it

detects an obstacle or fire. If it detects an obstacle, the robot will transition back to the

“Survey State” in order to pick a direction to turn to and continue exploring. The robot will

transition to the “Survey State” if and only if the obstacle is within 30 cm of the robot

(threshold distance). If a fire is detected, the robot transitions to the “Rendezvous State”.

Rendezvous State

The flowchart for the “Rendezvous State” can be found in the Appendix.

Robots transition to the “Rendezvous State” when a fire has been detected.

When a robot detects fire, it communicates the approximate (x, y) coordinates of the fire

via Bluetooth communication to the centralized controller. When a single robot transitions

to the “Rendezvous State”, all other robots receive a signal that a fire has been detected

from the centralized controller. Hence, all robots transition to the “Rendezvous State” in

27

order to rendezvous at the location of the fire. Once this has been accomplished, the

program terminates; the system has achieved its purpose (as described in the “Design

Specifications” section).

Greedy Survey

While testing the system, it was found that the “Survey State” is rather time

consuming. The survey state involves point-turning clockwise by 45° and measuring the

distance to the nearest obstacle in that direction. The direction with the furthest obstacle

present is selected and explored. However, surveying all 8 directions is inefficient. Thus,

an alternative version of the survey algorithm, “Greedy Survey”, is proposed. Similar to

the previously employed survey algorithm, “Greedy Survey” involves the robot

point-turning clockwise by 45° and measuring the distance to the nearest obstacle in that

direction. However, “Greedy Survey” stops as soon as it finds a direction in which the

nearest obstacle is at least 30 cm (threshold distance) away. For example, if the robot

measures the distance to the nearest obstacle at a 135° heading as 35cm, the robot will

remain at this heading and transition to the “Explore State” without checking distances to

the nearest obstacles at other headings.

By finding a satisfactory solution (an object that is far enough) instead of an

optimal solution (the furthest object), this algorithm saves time and makes the system

more efficient but does not compromise on its functionality. Since efficiency is an

important design criterion, the “Greedy Survey” algorithm was chosen to replace the

previously described survey algorithm.

Mapping Robot Motion

While each robot follows the described state machine, it sends data about its

heading, distance travelled, and distance to the nearest obstacle to the centralized

controller during every loop function call in the program. Thus, the centralized controller

is able to calculate the absolute position of the robot and of any obstacles detected in

the environment. From these readings, a map of the environment can be constructed

using a program written in the Processing language. The centralized controller, in this

28

study, is a laptop computer paired with the HC-05 Bluetooth modules of each of the

robots.

5.4.3 Bluetooth System Setup

Figure 16: Diagram showing Bluetooth Communication

The diagram above shows Bluetooth communication for the proposed system

with N robots. Each robot will be connected to the centralized controller (in this case, a

laptop computer) and will be able to send data to and receive data from it. Robots

constantly send data about their position in the environment to the centralized controller.

This data is used to construct the map of the environment. When a single robot detects

fire, it communicates this information to the centralized controller. The centralized

controller then communicates that information to all robots in the swarm; consequently,

all robots transition to the “Rendezvous State”.

5.4.4 Images of the Final Robot System

Images of the final robot system and full subsystem integration can be found in

the Appendix.

29

6 Testing and Verification

In order to determine whether or not the proposed system meets the aforementioned

design criteria, a series of tests were carried out. The following section describes these tests

and analyses the results obtained from them. Testing was conducted on individual subsystems

as well as on the fully integrated system.

6.1 Individual Subsystem Tests

6.1.1 Drive Subsystem

Figure 17: Diagram of Approximate Robot Trajectory

The PID function which enabled the robot to move forward in a straight line was

compared with a function that simply assigned both motors the same speed. Each time,

the robot was driven a distance of 100 cm in the forward direction and its horizontal

deviation from the straight line path was measured. The horizontal deviation from the

straight path without using PID was ~60 cm more than while using the PID function. This

test was repeated and a difference of ~60 cm was obtained each time. Thus, the PID

30

function was successful in preventing the robot from veering off from its straight line

path.

Similar tests were repeated on the PID function which enabled the robot to point

turn by a specified angle. The function was allowed a margin of error of ±5°. This was

done in order to reduce the duration of time spent on each turn and to prevent

oscillation, due to overcorrection by the controller, of the robot when it was less than 5°

away from the setpoint heading. This function also worked as intended across several

trials, within the margin of error of ±5°.

6.1.2 Sensor Subsystem

Ultrasonic Sensor

In preliminary tests of the ultrasonic sensor, it was noticed that the ultrasonic

sensor tends to underestimate the actual distance between itself and the object. It was

observed that the distance calculated by the ultrasonic sensor was often less than the

actual distance of the object from the robot. For a graph of actual distance (y-axis)

versus calculated distance (x-axis), if the gradient of the least-squares regression line is

greater than one, we can conclude that the ultrasonic sensor does indeed underestimate

the actual distance between itself and the object. Hence, a hypothesis test can be

conducted.

● Null Hypothesis (H0): β = 1

● Alternate Hypothesis (HA): β > 1, where β is the gradient of the least squares

regression line of a plot of actual distance versus calculated distance.

A t-test for the slope of a regression line was conducted to test the hypotheses,

at a significance level of ɑ = 0.05. A sample of 15 random distances between 1-100 cm

was generated using a random number generator, and both the actual and calculated

distances were recorded. Using this sample, a least squares regression line was

calculated.

31

Tables 4 and 5: Linear Regression Output Summary

Regression Statistics

Multiple R 0.999816889

R Square 0.999633811

Adjusted R Square 0.999605643

Standard Error 0.472458906

Observations 15

Coefficients Standard Error t Stat P-value

Intercept -0.130894438 0.31314583 -0.4179983 0.68277035

Calculated Distance 1.02604046 0.00544659 188.382095 1.0018E-23

As shown above, there is a strong positive linear relation between calculated

distance and actual distance, with a r-squared value of ~99.96%.

Figure 19: Scatter Plot of Actual Distance versus Calculated Distance

32

Figure 20: Residual Plot of Calculated Distance

Since calculated distance and actual distance have a strong linear relation,

residuals are evenly spaced and the sample of 15 actual distances were randomly

selected from the range 1-100 cm, the conditions for conducting a t-test for the slope of a

regression line have been satisfied.

The value of the test-statistic is t = 4.78106 and the corresponding p-value is p =

1.7942 × 10-4. Since the p-value is less than the significance level, there is sufficient

statistical evidence to reject the null hypothesis that β = 1. Hence, we can conclude that

the ultrasonic sensor does indeed underestimate the actual distance of an object. Since

the slope of the regression line is ~1.026, calculated distance values will be scaled by

this factor to obtain actual distance. Nevertheless, the size of the underestimation of

actual distance is small and it will have a negligible impact on the performance of the

system.

Flame Sensor

Since the flame sensor was connected to a digital pin, its sensitivity was adjusted

using a trial-and-error method. Since the proposed system should be able to sense a fire

that is at most 20 cm away, the sensitivity of the flame sensor was adjusted using its

trimpot until it was able to consistently sense fires that are at most 20±2 cm away. The

33

flame sensor is also able to detect fire when it is angled less than 10° away from the

flame. Another observation that was made was that when the flame sensor is blocked by

an opaque obstacle, it was not able to sense the flames. This is reasonable, since the

rendezvous algorithm has been designed to avoid obstacles in the path of the robot.

6.2 Full Subsystem Integration Tests

6.2.1 Single Robot

In order to test the full-subsystem integration of a single robot, a robot was

tasked to explore a simulated environment and create a map of it. Since only a single

robot was tested, a fire was not placed in the environment as the rendezvous state can

only be tested with multiple robots. Five trials were conducted, wherein the robot was

placed at the center of the unfamiliar environment and switched on. The robot was also

connected to a centralized controller that plotted the robot’s output in the form of a map.

The size of the simulated environment was a 150cm-by-150cm square shaped wooden

enclosure with 15 cm high walls. The robot was given two minutes to construct a map of

the environment.

34

Figure 21: Output of Processing sketch for Trial 3

Note: Blue points represent the robot's trajectory and red points represent

obstacles detected in the environment.

Above is an example of a map generated by the Processing sketch run on the

centralized controller, during Trial 3. While the robot was successful in avoiding

obstacles and exploring the simulated environment, there are a few inaccuracies in the

constructed map. For example, noise in the readings of the ultrasonic sensor caused the

robot to change state even when there weren’t any obstacles in the robot’s path. Another

observation made across all trials was that the robot tends to explore the boundaries or

edges of the environment instead of the center of the environment. This is because of

the “Greedy Survey State” algorithm, which takes the first satisfactory path found (i.e.

along the wall of the enclosure) as opposed to the original “Survey State”, which

searches for the path with the furthest obstacle, which would have been towards the

center of the simulated environment. Maps constructed by the robot for Trials 1 through

5 can be found in the Appendix.

6.2.2 Multiple Robots

Mapping Task

35

The mapping task described previously was repeated, but with two robots instead

of using a single robot. The same environment was used as previously described. The

robots were given two minutes to map out the simulated environment. 5 Trials were

conducted. Since only the mapping abilities of the robots were being tested, a flame was

not placed in the simulated environment. Both robots were connected to the centralized

controller and they subsequently transmitted data to it. Robots were placed with a 30 cm

gap between them.

Figure 22: Output of Processing sketch for Trial 1

Note: Green points represent robot 1's trajectory, blue points represent

robot 2’s trajectory and red points represent obstacles detected in the

environment.

Above is an example of a map generated by the Processing sketch run on the

centralized controller, during Trial 1. Robots were successful in avoiding obstacles and

following the state machine. However, due to noise from the ultrasonic sensor and small

mechanical differences in the encoders used by both robots, the map contains slight

inaccuracies. For example, red dots can be observed in certain areas in the map in

which there were no obstacles placed. Moreover, due to the robots detecting each other

36

as obstacles when they crossed paths, red dots can be observed at intersections of their

paths.

Fire Detection and Rendezvous State

In order to test the “Rendezvous State” of the system, I placed a simulated fire in

the 150 cm by 150 cm environment used previously. The fire was simulated by a lit

candle. The robots were placed at the left-wall of the enclosure and the fire was placed

at a random location in the environment. The time taken for the robots to detect and

rendezvous at the fire was recorded. 10 such trials were conducted. A t-statistic was

used to estimate the mean time taken for the robots to detect and rendezvous at the fire.

A 95% level of confidence was used. The raw data for trials 1 through 10 can be found in

the Appendix.

The mean time taken by 2 robots to detect and rendezvous at the site of the fire

for the sample of 10 trials was x̅ = 33.338 seconds. This is a point estimate of μ, or the

mean time taken by 2 robots to detect and rendezvous at the site of a fire in an area of

2.25 m2. The standard deviation in the time taken by the two robots to detect and

rendezvous at the site of the fire for the sample of 10 trials was s = 7.0525 seconds. In

order to determine a 95% confidence interval for μ, we must use the critical value of the

t-statistic with 9 degrees of freedom (t-crit = 2.26216).

Sample Size () = 10𝑛

Standard Error (SE) = = = 2.230
𝑠
𝑛

7.0525
10

Margin of Error (MOE) = t-crit × SE = 2.26216 × 2.230 = 4.9733 seconds

95% Confidence Interval of μ = x̅ ± MOE = 33.338 ± 4.973 seconds

Therefore, we are 95% confident that the mean time taken by the two robots to

detect and rendezvous at the site of a fire in an area of 2.25 m2 lies in the range (28.365

seconds, 38.311 seconds).

6.2.3 Verification of Design Criteria

37

In order to determine whether the proposed system meets the design criteria

proposed previously, the results of the aforementioned tests carried out on the system

were analyzed.

Efficiency

The design criteria stated that, for the proposed system to be called efficient, it

would have to collect essential data at a rate of 1 m2 per robot per minute or ~0.0167 m2

per robot per second. In the “Fire Detection and Rendezvous State” trials, it was

determined that essential data (that is, the position of fire and obstacles in the

environment) can be collected from an area of 2.25 m2 using 2 robots in at most 38.311

seconds. This is a rate of ~0.029365 m2 per robot per second, which exceeds 0.0167 m2

per robot per second. Hence, the proposed system is efficient. Moreover, the efficiency

of the system can be increased further by modifying the robot state machine such that it

avoids other robots in the swarm. If robots survey different areas of the unfamiliar

environment, there will be fewer robot-robot collisions and thus higher efficiency.

Size and Weight

Each robot has a size of approximately 15 cm by 17 cm by 20 cm. Hence, each

robot is able to fit within a 30 cm by 30 cm by 30 cm cube. Thus, it has met the size

criterion. Robots weigh 604g and 588g. Since both robots weigh less than 1000g (1.0

kg), they meet the weight criterion. Robots are small and portable. This would allow the

system to be extended to more than two robots without significant logistical challenges.

Cost

The cost of each swarm robot was determined to be ~$32.05, which exceeds the

$20 budget mentioned in the design criteria. However, $32.05 is a reasonable amount

and costs of individual robots would decrease if parts are purchased in bulk for multiple

swarm robots.

38

7 Conclusion

In conclusion, this paper proposes a swarm robotic system that is able to explore an

unfamiliar fireground environment and gather essential information. The robotic system is able

to determine the positions of fires and obstructions as well as construct an approximate map of

the unfamiliar environment. In this paper, the design of a single swarm robot has been

described and the swarm system has been demonstrated using two identical robots. Design

criteria for the system have been outlined and have been verified using statistical tests. The

proposed system is able to explore, map out and collect essential data at a rate of at least

0.029365 m2 per robot per second. Thus, it is both efficient and scalable, due to its low cost and

small size per robot in the swarm. Not only does this paper propose a novel application of

swarm robotics but it also contributes to ongoing research on robotic systems for the exploration

and mapping of fireground environments. If implemented, the proposed system would be able to

help firefighters gain valuable information about dangerous fireground environments, which

could then be used to inform the process of planning escape routes and locating survivors.

8 Recommendations

In order for the proposed system to be implemented in a real-life fireground environment,

the following improvements can be made to the system.

The swarm robotic system was demonstrated using only two robots, due to logistical

constraints created by the COVID-19 pandemic. However, this system can be extended by

including more identical robots that follow the state machine described previously. With more

robots, large fireground environments can be surveyed quickly and easily. Furthermore, if the

state machine is modified, such that robots avoid each other while exploring the environment,

each robot will be able to explore a larger area and there will be fewer robot collisions. Thus, the

efficiency of the system would increase further.

Although the maps plotted by the two robots in this paper depict all of the important

features present in the simulated environments, there is a lot of noise in these maps. This is

primarily due to noise from the ultrasonic sensor. If the budget for individual swarm robots is

increased, a more expensive but more accurate sensor, such as a LIDAR, can be included

instead of the ultrasonic sensor. Another observation that was made during the testing phase

39

was that the ultrasonic sensor was only able to accurately measure object distances when the

surface of the object was normal to the waves of ultrasound emitted by the sensor. If the

obstruction was placed at an angle, it would not be detected by the sensor and the robot would

collide with it. In order to solve this problem, the sensor could have been mounted on a

servo-motor, which would enable the sensor to rotate to and measure object distance at various

angles instead of just directly ahead of the robot. An Arduino Mega, or a microcontroller with a

greater number of PWM pins, can be used instead of the Arduino UNO, to accommodate the

servo motor.

Lastly, modifications can be made to swarm robots in order to achieve different

functions. If survivors need to be located instead of fires, flame sensors can be replaced by

cameras. A vision processing algorithm could be implemented to detect survivors. Nevertheless,

the state machine for this system would remain the same. If the swarm must extinguish fires, a

fire-extinguishing mechanism can be added to each robot, which could be operated after all

robots have rendezvoused at the site of the fire.

40

9 References

Athira A., Agnal, M., & Kumar, S. (2019). Fire and Rescue Robot. International Journal of

Computer Applications, 182(45), 975–8887.

https://www.ijcaonline.org/archives/volume182/number45/kumar-2019-ijca-918577.pdf

Bakhshipour, M., Jabbari Ghadi, M., & Namdari, F. (2017). Swarm robotics search & rescue: A

novel artificial intelligence-inspired optimization approach. Applied Soft Computing, 57,

708-726. doi:10.1016/J.ASOC.2017.02.028

Becker, A., Fekete, S. P., Kröller, A., Lee, S. K., McLurkin, J., & Schmidt, C. (2013).

Triangulating unknown environments using robot swarms. Proceedings of the 29th

Annual Symposium on Symposuim on Computational Geometry - SoCG ’13.

https://doi.org/10.1145/2462356.2462360

de Mendonça, R. M., Nedjah, N., & de Macedo Mourelle, L. (2012). Swarm Robots with Queue

Organization Using Infrared Communication (B. Murgante, O. Gervasi, S. Misra, N.

Nedjah, A. M. A. C. Rocha, D. Taniar, & B. O. Apduhan, Eds.). Springer Link; Springer.

https://doi.org/10.1007/978-3-642-31125-3_11

E-puck education robot. (2018). E-Puck.org. http://www.e-puck.org/

Hamann, H. (2018). Swarm Robotics: A Formal Approach. Cham: Springer International

Publishing. Retrieved April 3, 2021, from https://ebooks.ohiolink.edu

Kostavelis I., Gasteratos A. (2017) Robots in Crisis Management: A Survey. In: Dokas I.,

Bellamine-Ben Saoud N., Dugdale J., Díaz P. (eds) Information Systems for Crisis

Response and Management in Mediterranean Countries. ISCRAM-med 2017. Lecture

Notes in Business Information Processing, vol 301. Springer, Cham.

https://doi.org/10.1007/978-3-319-67633-3_4

Navarro, I., & Matía, F. (2013). An Introduction to Swarm Robotics. ISRN Robotics, 2013, 1–10.

https://doi.org/10.5402/2013/608164

41

Penders, J., Alboul, L., Witkowski, U., Naghsh, A., Saez-Pons, J., Herbrechtsmeier, S., & El

Habbal, M. (2011). A Robot Swarm Assisting a Human Fire-Fighter. Advanced Robotics,

25(1-2), 93–117. https://doi.org/10.1163/016918610x538507

Starr, J.W., Lattimer, B.Y. Evaluation of Navigation Sensors in Fire Smoke Environments. Fire

Technol 50, 1459–1481 (2014). https://doi.org/10.1007/s10694-013-0356-3

Sucuoglu, H. S., Bogrekci, I., & Demircioglu, P. (2018). Development of Mobile Robot with

Sensor Fusion Fire Detection Unit. IFAC-PapersOnLine, 51(30), 430–435.

https://doi.org/10.1016/j.ifacol.2018.11.324

Taha, Ihsan A., and Hamzah M. Marhoon. “Implementation of Controlled Robot for Fire

Detection and Extinguish to Closed Areas Based on Arduino.” TELKOMNIKA

(Telecommunication Computing Electronics and Control) 16, no. 2 (April 1, 2018): 654.

https://doi.org/10.12928/telkomnika.v16i2.8197.

World Fire Statistics. (2021, October 15). World Fire Statistics | CTIF - International Association

of Fire Services for Safer Citizens through Skilled Firefighters.

https://www.ctif.org/world-fire-statistics

42

10 Appendices

10.1 Circuit Diagram

Figure 23: Circuit Diagram of Full Subsystem Integration of a
Swarm Robot

43

10.2 Flowcharts of States

Figure 24: Flowchart of Survey State

44

Figure 25: Flowchart of Explore State

Figure 26: Flowchart of Rendezvous State

45

10.3 Images of Proposed System

Figures 27, 28, 29: Top, Side and Front Views of a single
Swarm Robot

46

Figure 30: Two Swarm Robots

Figure 31: Two Swarm Robots Rendezvousing at Fire in
Simulated Environment

47

10.4 Raw Data from Testing

10.3.1 Ultrasonic Sensor Tests

Table 3: Raw Data from Tests of Ultrasonic Sensor

Trial Number Actual Distance (cm) Calculated Distance (cm)

1 84 81.92

2 47 45.32

3 19 18.22

4 65 63.84

5 72 69.75

6 70 68.58

7 77 74.83

8 9 8.72

9 71 69.19

10 38 37.88

11 33 32.56

12 50 48.30

13 61 59.86

14 85 83.35

15 32 31.96

Note: For each trial, values of “Actual Distance” were generated using a random

number generator. The corresponding “Calculated Distance” was recorded.

10.3.2 Single Robot Tests

48

Figures 32, 33, 34, 35, 36: Trials 1-5 for Single Robot Mapping

Note: Blue points represent the robot's trajectory and red points represent obstacles

detected in the environment.

49

10.3.2 Multiple Robot Tests

Figures 37, 38, 39, 40, 41: Trials 1-5 for Multiple Robot Mapping

Note: Green points represent robot 1's trajectory, blue points represent robot 2’s

trajectory and red points represent obstacles detected in the environment.

50

Table 5: Raw Data from Tests of Rendezvous State

Trial Number Time Taken (s)

1 25.36

2 30.02

3 43.02

4 32.45

5 40.19

6 37.87

7 22.76

8 27.76

9 41.53

10 32.42

10.5 Video Demonstration

A video demonstration of the proposed system can be found on YouTube at

https://youtu.be/uKg5bWZSw3I.

51

10.6 Bill of Materials

Table 6: Bill of Materials for a Single Robot

Part Name Quantity (units) Cost ($/unit) Total Cost ($)

150 RPM Geared DC Motors 2 $ 0.67 $ 1.34

L298N Motor Controller 1 $ 2.70 $ 2.70

MPU-6050 1 $ 3.25 $ 3.25

HC-020K Encoder 2 $ 5.20 $ 10.40

HC-SR04 Ultrasonic Sensor 1 $ 1.30 $ 1.30

IR-Based Flame Sensor 1 $ 0.65 $ 0.65

HC-05 Bluetooth Module 1 $ 2.86 $ 2.86

Robot Chassis 1 $ 4.55 $ 4.55

Other Expenses - $ 5.00 $ 5.00

Total - - $ 32.05

10.7 Full System Code

10.7.1 Arduino Code

// This library is needed to read data from the gyroscope

#include <Wire.h>

// Right motor pins

int pwmR = 10;

int in1 = 9;

int in2 = 8;

// Left motor pins

int pwmL = 5;

int in3 = 7;

52

int in4 = 6;

// Encoders pins

int encL = 2;

int encR = 3;

// IMU (MPU-6050)

int MPU = 0x68;

// Ultrasonic sensor pins

int trig = 12;

int echo = 11;

// Flame Sensor pin

int flame = 4;

// Constants associated with the drive function

int maxSpeed = 120;

int minSpeed = 80;

int driveSpeed = 100;

int speedRange = (maxSpeed - minSpeed) / 2;

int assignedLeftSpeed = 0;

int assignedRightSpeed = 0;

// Constants associated with PID functions

unsigned long prevPIDTime = millis();

float kP = 1.2;

float kI = 0.1;

float kD = 0.4;

float prevError = 0;

float integral = 0;

float derivative = 0;

// Constants associated with distance calculations from encoder

unsigned long rpmL = 0, rpmR = 0;

volatile int pulsesL = 0, pulsesR = 0;

unsigned long prevRPMTime = 0;

unsigned long readingDelay = 1000; // Readings are adjusted (rpmL and

rpmR) every 1000 ms

unsigned int pulsesPerTurn = 20; // The encoder's optical disc has 20

etched holes

unsigned long debounceInterval = 10; // If a pulse has time period > 10 ms,

it is genuine

53

unsigned long prevInterruptTimeL = millis();

unsigned long prevInterruptTimeR = millis();

float wheelDiameter = 6.5; // Wheel diameter in cm

float wheelCircumference = 3.1415 * wheelDiameter;

float distancePerPulse = wheelCircumference / (float) pulsesPerTurn;

float totalDistanceLeft = 0;

float totalDistanceRight = 0;

float previousDistanceRight = 0;

float previousDistanceLeft = 0;

float averageDistance = 0;

// Constants related to calculations of yaw angle from gyroscope

float rateX, rateY, rateZ;

float roll = 0, pitch = 0, yaw = 0;

float errorX = 0, errorY = 0, errorZ = 0;

unsigned long previousIMUTime = millis();

// Constants related to ultrasonic sensor

float objectDistance = 150.0;

float thresholdDistance = 30.0;

// Constants related to Bluetooth communication subsystems

unsigned long dataDelay = 200;

unsigned long previousSendTime = millis();

float data = 0;

int bluetoothPort = 1; // Port number is 1,2...N for each robot in the

swarm.

// Constants related to the state machine programming

int state = 0;

float heading = 0; // The heading that the robot is supposed to be at

int counter = 0;

long completionTimer = millis();

int maxDistance = 0;

float bestAngle = 0;

long ultrasonicTimer = millis();

long backupTime = 200; // The robot backs up for 200 ms when an obstacle

is detected

bool stopped = false; // This boolean variable stores whether or not the

robot is stuck/stopped

// Constants related to flame sensor

54

bool fire = false;

int flameValue = 1;

// Gives the sign of the number as +1 (positive), -1 (negative) or 0

(zero).

int sign(float number) {

if (number < 0) return -1;

else if (number > 0) return 1;

else return 0;

}

// Drive Subsystem Methods

// Assign the right motor a supplied speed using PWM

// If the supplied speed is negative, the motor must be driven in the

reverse direction

void right(int speed) {

if (speed > 0) {

digitalWrite(in1, HIGH);

digitalWrite(in2, LOW);

} else if (speed < 0) {

digitalWrite(in1, LOW);

digitalWrite(in2, HIGH);

} else {

digitalWrite(in1, LOW);

digitalWrite(in2, LOW);

}

analogWrite(pwmR, abs(speed));

}

// Assign the left motor a supplied speed using PWM

// If the supplied speed is negative, the motor must be driven in the

reverse direction

void left(int speed) {

if (speed < 0) {

digitalWrite(in3, HIGH);

digitalWrite(in4, LOW);

} else if (speed > 0) {

digitalWrite(in3, LOW);

digitalWrite(in4, HIGH);

} else {

digitalWrite(in3, LOW);

digitalWrite(in4, LOW);

55

}

analogWrite(pwmL, abs(speed));

}

// Drive by assigning the right and left motors supplied speeds

void drive(int l, int r) {

assignedLeftSpeed = l;

left(l);

assignedRightSpeed = r;

right(r);

}

// Reset the correction components of the PID function

void resetTerms() {

prevPIDTime = millis();

prevError = 0;

integral = 0;

derivative = 0;

}

// PID function to drive forwards at a specified heading

// For e.g. forward(0.0) would make the robot drive forwards at a 0.0 deg

angle, or simply, straight forwards

// For e.g. forward(30.0) would make the robot drive forwards at a 30.0 deg

heading

void forward(float setpoint) {

// Calculate error and the components of correction

float error = setpoint - yaw;

float proportional = kP * error;

derivative = kD * (error - prevError) * ((float) (millis() - prevPIDTime)

/ 1000);

integral += kI * error * ((float) (millis() - prevPIDTime) / 1000);

// Reset the integral term when the robot has stopped

if (rpmL == 0 && rpmR == 0) integral = 0;

// Calculate the correction term

int pid = proportional + integral + derivative;

int correction = (int) sign(pid) * constrain(abs(pid), 0, 50);

// Apply correction to the drive subsystem

56

drive(driveSpeed + correction, driveSpeed - correction);

prevError = error;

prevPIDTime = millis();

}

// PID function to move to a specified heading

// For e.g. moveToAngle(30.0) would make the robot turn to 30.0 deg

heading, relative to its starting orientation

void moveToAngle(float setpoint) {

// Since the robot is not driving forwards and is simply point turning,

do not increment distance travelled variables

resetDistances();

// Calculate error and the components of correction

float error = setpoint - yaw;

float proportional = kP * error;

derivative = kD * (error - prevError) * ((float) (millis() - prevPIDTime)

/ 1000);

integral += kI * error * ((float) (millis() - prevPIDTime) / 1000);

// Reset the integral term when the robot has stopped

if (rpmL == 0 && rpmR == 0) integral = 0;

// Calculate the correction term

int pid = proportional + integral + derivative;

int correction = (sign(pid) * (int) constrain(abs(pid), minSpeed,

maxSpeed));

// Apply correction to the drive subsystem. If the robot is within 5° of

its setpoint, it can stop

if (abs(error) < 5.0) drive(0, 0);

else drive(correction, -correction);

prevError = error;

prevPIDTime = millis();

}

// Interrupt handler for left encoder

void debounceL() {

57

unsigned long interruptTimeL = millis();

if (interruptTimeL - prevInterruptTimeL > debounceInterval) {

pulsesL++;

totalDistanceLeft += distancePerPulse;

}

prevInterruptTimeL = interruptTimeL;

}

// Interrupt handler for right encoder

void debounceR() {

unsigned long interruptTimeR = millis();

if (interruptTimeR - prevInterruptTimeR > debounceInterval) {

pulsesR++;

totalDistanceRight += distancePerPulse;

}

prevInterruptTimeR = interruptTimeR;

}

// Resets calculated distances for left and right side

void resetDistances() {

totalDistanceLeft = 0;

totalDistanceRight = 0;

previousDistanceLeft = 0;

previousDistanceRight = 0;

}

// Processes inputs of encoders and adjusts RPM values

void processEncoders() {

if (millis() - prevRPMTime >= readingDelay) {

// Detach interrupts

detachInterrupt(digitalPinToInterrupt(encL));

detachInterrupt(digitalPinToInterrupt(encR));

// Calculate RPM for left and right side

unsigned long currentTime = millis();

rpmL = (60 * 1000 / pulsesPerTurn) / (currentTime - prevRPMTime) *

pulsesL;

rpmR = (60 * 1000 / pulsesPerTurn) / (currentTime - prevRPMTime) *

pulsesR;

prevRPMTime = millis();

pulsesL = 0;

pulsesR = 0;

// Attach interrupts again

58

attachInterrupt(digitalPinToInterrupt(encL), debounceL, FALLING);

attachInterrupt(digitalPinToInterrupt(encR), debounceR, FALLING);

}

}

// Adjust yaw angle based on rate of rotation measured

void processIMU() {

Wire.beginTransmission(MPU);

Wire.write(0x43);

Wire.endTransmission(false);

Wire.requestFrom(MPU, 6, true);

rateX = (Wire.read() << 8 | Wire.read()) / 131.0;

rateY = (Wire.read() << 8 | Wire.read()) / 131.0;

rateZ = (Wire.read() << 8 | Wire.read()) / 131.0;

rateX -= errorX;

rateY -= errorY;

rateZ -= errorZ;

roll += rateX * ((float) (millis() - previousIMUTime) / 1000);

pitch += rateY * ((float) (millis() - previousIMUTime) / 1000);

yaw += rateZ * ((float) (millis() - previousIMUTime) / 1000);

previousIMUTime = millis();

}

// Calculate bias in rate of rotation measurements by gyroscope

void calculateIMUError(int caliberate) {

int counter = 0;

while (counter < caliberate) {

Wire.beginTransmission(MPU);

Wire.write(0x43);

Wire.endTransmission(false);

Wire.requestFrom(MPU, 6, true);

rateX = Wire.read() << 8 | Wire.read();

rateY = Wire.read() << 8 | Wire.read();

rateZ = Wire.read() << 8 | Wire.read();

errorX += (rateX / 131.0);

errorY += (rateY / 131.0);

errorZ += (rateZ / 131.0);

counter++;

delay(20);

}

errorX /= (float) caliberate;

errorY /= (float) caliberate;

errorZ /= (float) caliberate;

59

}

// Sensor Subsystem Methods

// Calculate object distance from ultrasonic sensor

void processUltrasonic() {

drive(0, 0);

digitalWrite(trig, HIGH);

delayMicroseconds(10);

digitalWrite(trig, LOW);

long duration = pulseIn(echo, HIGH);

objectDistance = ((float) (duration) * ((float) 34 / 2000));

delay(100);

}

// Process flame sensor reading

void processFlame() {

flameValue = digitalRead(flame);

// This robot has detected fire

if (flameValue == 0 && !fire) {

fire = true;

state = 3;

drive(0, 0);

delay(100);

// Send bluetooth data if robot has detected fire

Serial.print(bluetoothPort);

Serial.println(" fire");

delay(dataDelay);

Serial.print(bluetoothPort);

Serial.println(" fire");

delay(dataDelay);

Serial.print(bluetoothPort);

Serial.println(" fire");

delay(dataDelay);

}

}

// Bluetooth Communication Subsystem

// Send bluetooth data about position and orientation

void sendBluetoothData(int port) {

60

if (millis() - previousSendTime > dataDelay) {

// Current orientation of robot

float angle = yaw;

// Compute average distance travelled since last time data was sent

averageDistance = ((totalDistanceRight - previousDistanceRight)/2.0) +

((totalDistanceLeft - previousDistanceLeft) / 2.0);

if (totalDistanceRight == previousDistanceRight) averageDistance = 0;

if (totalDistanceLeft == previousDistanceLeft) averageDistance = 0;

previousDistanceRight = totalDistanceRight;

previousDistanceLeft = totalDistanceLeft;

previousSendTime = millis();

// Send port number, orientation, distance travelled, object distance

Serial.print(port);

Serial.print(" ");

Serial.print(angle);

Serial.print(" ");

Serial.print(averageDistance);

Serial.print(" ");

Serial.println(objectDistance);

}

}

// Read and process bluetooth data

void readBluetoothData() {

if (Serial.available() > 0) {

// Other robot has detected fire

if (!fire) {

while (true) {

// Adjust yaw angle

if (yaw <= 180) {

if (yaw > -180) break;

else yaw -= 360.0;

}

else yaw += 360.0;

}

// Get relative angle of fire

data = Serial.parseFloat();

fire = true;

// Rendezvous state

state = 2;

61

}

}

}

// State Machine

// Handle states

void stateMachine() {

switch(state) {

// State 0 - Survey State

case 0:

// surveyState();

greedySurvey();

break;

// State 1 - Explore State

case 1:

exploreState();

break;

// State 2 - Rendezvous State

case 2:

rendezvousState();

break;

// State 3 - End

case 3:

drive(0, 0);

break;

default:

drive(0, 0);

break;

}

}

// Survey State

void surveyState() {

if (counter < 9) {

float turnAngle = 45.0 * counter;

if (abs((yaw - heading) - turnAngle) < 5.0) {

drive(0, 0);

if (millis() - completionTimer > 2000) {

processUltrasonic();

if (objectDistance > maxDistance) {

62

maxDistance = objectDistance;

bestAngle = turnAngle;

}

counter++;

if (counter == 9) heading += bestAngle;

completionTimer = millis();

}

}

else {

moveToAngle(heading + turnAngle);

completionTimer = millis();

}

}

else {

// Move to computed best angle

if (abs(yaw - heading) < 5.0) {

drive(0, 0);

if (millis() - completionTimer > 2000) {

state = 1;

counter = 0;

maxDistance = 0;

bestAngle = 0;

completionTimer = millis();

}

}

else {

moveToAngle(heading);

completionTimer = millis();

}

}

}

// Greedy Survey State

void greedySurvey() {

if (counter < 9) {

float turnAngle = 45.0 * counter;

if (abs((yaw - heading) - turnAngle) < 5.0) {

drive(0, 0);

if (millis() - completionTimer > 2000) {

processUltrasonic();

if (objectDistance > thresholdDistance) {

// If object is far enough, go to Explore State

63

state = 1;

counter = 0;

heading += turnAngle;

completionTimer = millis();

}

counter++;

completionTimer = millis();

}

}

else {

moveToAngle(heading + turnAngle);

completionTimer = millis();

}

}

else {

state = 1;

counter = 0;

completionTimer = millis();

}

}

// Explore State

void exploreState() {

int averageAssignedSpeed = (assignedLeftSpeed + assignedRightSpeed) /

2;

stopped = ((averageDistance == 0) && (averageAssignedSpeed != 0));

if (millis() - ultrasonicTimer > 250) {

if (stopped) {

objectDistance = 0.0;

// Robot encoders overcount about 10.0 cm in distance when robot is

stuck

totalDistanceLeft -= 10.0;

totalDistanceRight -= 10.0;

} else processUltrasonic();

ultrasonicTimer = millis();

// If an obstacle is detected or robot is stopped, back up and go to

Survey State

if (objectDistance < thresholdDistance) {

drive(-driveSpeed, -driveSpeed);

delay(backupTime);

64

drive(0, 0);

delay(50);

// Robot backs up about 5.0 cm in backupTime

totalDistanceLeft -= 5.0;

totalDistanceRight -= 5.0;

state = 0;

}

}

else {

forward(heading);

}

}

// Rendezvous State

void rendezvousState() {

// If this robot detects fire, it should stop

if (flameValue == 0) {

state = 3;

} else {

if (abs(yaw - data) < 5.0) {

drive(0, 0);

if (millis() - completionTimer > 2000) {

// When the robot turns to the heading at which fire is located, it

should move forward

int averageAssignedSpeed = (assignedLeftSpeed + assignedRightSpeed)

/ 2;

stopped = ((averageDistance == 0) && (averageAssignedSpeed != 0));

if (millis() - ultrasonicTimer > 250) {

processUltrasonic();

ultrasonicTimer = millis();

if (stopped || objectDistance < thresholdDistance) {

drive(-driveSpeed, -driveSpeed);

delay(backupTime);

// Robot backs up about 5.0 cm

totalDistanceLeft -= 5.0;

totalDistanceRight -= 5.0;

state = 3;

}

}

else {

forward(data);

}

65

}

}

// Move to the heading of the fire, as sent by the centralized

controller

else {

moveToAngle(data);

completionTimer = millis();

}

}

}

void setup() {

// Begin serial communication

Serial.begin(9600);

// Initialize pins

pinMode(pwmL, OUTPUT);

pinMode(pwmR, OUTPUT);

pinMode(in1, OUTPUT);

pinMode(in2, OUTPUT);

pinMode(in3, OUTPUT);

pinMode(in4, OUTPUT);

pinMode(encL, INPUT);

pinMode(encR, INPUT);

pinMode(trig, OUTPUT);

pinMode(echo, INPUT);

pinMode(flame, INPUT);

Wire.begin();

Wire.beginTransmission(MPU);

Wire.write(0x6B);

Wire.write(0x00);

Wire.endTransmission(true);

attachInterrupt(digitalPinToInterrupt(encL), debounceL, FALLING);

attachInterrupt(digitalPinToInterrupt(encR), debounceR, FALLING);

calculateIMUError(1000);

delay(2000);

66

}

void loop() {

processIMU();

processEncoders();

sendBluetoothData(bluetoothPort);

readBluetoothData();

processFlame();

// Follow state machine

stateMachine();

}

10.7.2 Processing Sketch

import processing.serial.*;

import java.lang.*;

import java.util.*;

// Bluetooth Ports for both robots

String one = "/dev/tty.HC-05-SPPDev";

String two = "/dev/tty.HC-05-SPPDev-1";

// Variables to store data used to track the positions of both robots

Serial port1;

Serial port2;

float[] coordinates1;

float[] coordinates2;

float[] object1;

float[] object2;

boolean state1 = false;

boolean state2 = false;

int size = 150; // Approximate size of enclosure in cm (used to size

plotting window)

float xoffset = (float) size/2;

float yoffset = (float) size/2;

int scale = 4; // Scale of plotted map in px per cm

67

// Starting position of Robot 1

float x1 = -15;

float y1 = 0;

// Starting position of Robot 2

float x2 = 15;

float y2 = 0;

// Absolute coordinates of detected fire

float xFire = 0;

float yFire = 0;

boolean fire = false;

int portFire = 0; // Stores which port the fire was reported from

void setup() {

size(600, 600); // (scale*size, scale*size)

strokeWeight(2);

colorMode(RGB);

// Initialize serial ports

port1 = new Serial(this, one, 9600);

port2 = new Serial(this, two, 9600);

port1.bufferUntil('\n');

port2.bufferUntil('\n');

}

// Modify angle calculated from atan function based on quadrant

float correctAngle(float angle, float x, float y) {

if (x < 0 && y < 0) return angle - 180;

if (x < 0 && y >= 0) return angle;

if (x >= 0 && y < 0) return angle + 180;

if (x >= 0 && y >= 0) return angle;

return angle;

}

// Called when a serial event occurs

void serialEvent(Serial port) {

String text = port.readStringUntil('\n');

if (text.contains("fire")) {

68

// If a fire has been detected

fire = true;

try {

String[] data = text.split(" ");

portFire = Integer.parseInt(data[0]);

}

catch(Exception e) {

System.out.println(text);

}

if (portFire == 1) {

// Calculate coordinates of fire

float fx = 20.0 * (float) Math.sin(Math.toRadians(coordinates1[0]));

float fy = 20.0 * (float) Math.cos(Math.toRadians(coordinates1[0]));

xFire = x1 + fx;

yFire = y1 - fy;

} else if (portFire == 2) {

// Calculate coordinates of fire

float fx = 20.0 * (float) Math.sin(Math.toRadians(coordinates2[0]));

float fy = 20.0 * (float) Math.cos(Math.toRadians(coordinates2[0]));

xFire = x2 + fx;

yFire = y2 - fy;

}

}

else {

// Modify variables storing position, heading of robot 1 and 2

try {

String[] data = text.split(" ");

int portNumber = Integer.parseInt(data[0]);

if (portNumber == 1) {

float angle = Float.parseFloat(data[1]);

float distance = Float.parseFloat(data[2]);

float object = Float.parseFloat(data[3]);

coordinates1 = new float[] {angle, distance};

object1 = new float[] {angle, object};

state1 = true;

}

else if (portNumber == 2) {

float angle = Float.parseFloat(data[1]);

float distance = Float.parseFloat(data[2]);

float object = Float.parseFloat(data[3]);

coordinates2 = new float[] {angle, distance};

69

object2 = new float[] {angle, object};

state2 = true;

}

else {

System.out.println(portNumber);

}

}

catch(Exception e) {

System.out.println(text);

}

}

}

// Plot map

void draw() {

if (fire) {

// If a fire has been detected, determine angle of fire relative to

second robot

float angle = 0.0;

if (portFire == 1) {

float dx = xFire - x2;

float dy = y2 - yFire;

System.out.println(xFire + " " + yFire);

System.out.println(x1 + " " + y1);

System.out.println(x2 + " " + y2);

angle = (float) Math.toDegrees(Math.atan(dx/dy));

angle = correctAngle(angle, dx, dy);

// Send the angle to the robot which has not detected fire

port2.write(Float.toString(angle));

}

else if (portFire == 2) {

float dx = xFire - x1;

float dy = y1 - yFire;

System.out.println(xFire + " " + yFire);

System.out.println(x1 + " " + y1);

System.out.println(x2 + " " + y2);

angle = (float) Math.toDegrees(Math.atan(dx/dy));

70

angle = correctAngle(angle, dx, dy);

// Send the angle to the robot which has not detected fire

port1.write(Float.toString(angle));

}

}

if (state1) {

// If new data has been received from robot 1, plot it on the map

float dx = coordinates1[1] * (float)

Math.sin(Math.toRadians(coordinates1[0]));

float dy = coordinates1[1] * (float)

Math.cos(Math.toRadians(coordinates1[0]));

float ox = object1[1] * (float) Math.sin(Math.toRadians(object1[0]));

float oy = object1[1] * (float) Math.cos(Math.toRadians(object1[0]));

// Plot obstacle position in red

stroke(255, 0, 0);

point((x1 + xoffset + ox) * scale, (y1 + yoffset - oy) * scale);

x1 += dx;

y1 -= dy;

// Plot robot 1 path in green

stroke(0, 100, 0);

point((x1 + xoffset) * scale, (y1 + yoffset) * scale);

state1 = false;

}

if (state2) {

// If new data has been received from robot 2, plot it on the map

float dx = coordinates2[1] * (float)

Math.sin(Math.toRadians(coordinates2[0]));

float dy = coordinates2[1] * (float)

Math.cos(Math.toRadians(coordinates2[0]));

float ox = object2[1] * (float) Math.sin(Math.toRadians(object2[0]));

float oy = object2[1] * (float) Math.cos(Math.toRadians(object2[0]));

// Plot obstacle position in red

stroke(255, 0, 0);

point((x2 + xoffset + ox) * scale, (y2 + yoffset - oy) * scale);

x2 += dx;

y2 -= dy;

// Plot robot 2 path in blue

71

stroke(0, 0, 255);

point((x2 + xoffset) * scale, (y2 + yoffset) * scale);

state2 = false;

}

}

